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refinement or a direct-methods procedure indepen- 
dent of the satellite reflections. This, at first sight 
surprising, result can be understood from the special 
nature of intergrowth compounds. The two subsys- 
tems coexist in a single thermodynamic phase and 
part of the satellite intensity due to the modulation is 
already contained in the main reflections. This 
information allowed the refinement of modulation 
parameters on main reflections only (Kato, 1990), 
but it is insufficient to reveal the modulation ampli- 
tudes in a Fourier synthesis (Fig. 1). The method 
proposed here allows one to calculate the satellite 
structure factors from the main reflections with suf- 
ficient accuracy to determine the modulation from a 
Fourier map (Fig. 2). 

Phases of the satellite reflections can be obtained 
as described earlier (Fan, van Smaalen, Lam & 
Beurskens, 1993). For their magnitudes to be deter- 
mined, a crucial step is that the functions 0sat(ns) 
and 0main(Hs) can both be determined from the main 
reflections alone [(15), (16) and (19)]. Applications 
are given to the inorganic misfit layer compounds 
(LaS)~.~4NbS2 and (PbS)~.~8TiS2. The Fourier map 
calculated with the main ,reflections and the satellite 

reflections generated in the direct-methods procedure 
is found to be indistinguishable from the Fourier 
synthesis using experimental amplitudes for all 
reflections combined with phases from the refinement 
(Figs. 2 and 3). This shows the structure factors of 
the satellite reflections calculated with (15) to be 
sufficiently accurate to determine the modulations in 
these composite crystals. 
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Abstract 

Two models of icosahedral quasicrystals are compared 
and connected. These are canonical-cell ordering (CCO) 
over medium-length scales (about 10/k and more) and 
dodecahedral local ordering (DLO), which describes 
interatomic arrangements. In the DLO model, each atom 
is surrounded by closest neighbours positioned at several 
vertices of a regular pentagon-dodecahedron; of the 
20 vertices of any dodecahedron, only a few can be 
occupied simultaneously without conflict (eight at most). 
Some icosahedral quasicrystals and their crystalline ap- 
proximants exhibit DLO as the main structure motif 
at atomic scales. DLO networks are formally described 
using an unconventional projection of a six-dimensional 
lattice. It is shown that most DLO configurations (but not 
all of them!) can be constructed from small atomic size 
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canonical cells that are a factor of "r 3 smaller than the 
original ones. Two of the small canonical cells have the 
forms of distorted tetrahedra. It is also shown that DLO 
produces naturally the two most popular decorations 
of the Ammann rhombohedra: the edge decoration and 
the vertex-face decoration. Moreover, both decorations 
can be identified inside the same approximant. For 
medium-range distances, DLO leads to CCO with spe- 
cial decorations of the canonical cells. Therefore, the 
ordering in quasicrystals and in their approximants can 
be constructed as a hierarchy of dodecahedral ordering 
(or a hierarchy of canonical cells). It is shown that 
within the DLO model there may be an additional 
ordering of closest neighbours that leads to the transition 
between quasicrystals with primitive and face-centred 
lattices. The DLO-based duality between o~-A1MnSi and 
A15Li3Cu approximants is demonstrated. Possible physi- 
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cal reasons for DLO are considered. Some intrinsic 
features and difficulties of the DLO and CCO models 
(frustrations, disorder etc.) are discussed. 

1. Introduction 

Since the discovery of quasicrystals, much effort has 
been expended in understanding their atomic ordering. 
Even before their discovery, it was recognized by Pen- 
rose (1979) and Mackay (1981) that the quasicrystalline 
ordering should be a hierarchy of similar units; that is, 
the ordering should reproduce itself at ever larger scales 
(inflation). For icosahedral quasicrystals, the inflation 
factor should be equal to 7- or 7-3 [7- is the golden mean, 
7- = 1 + 51/2/2]. This type of ordering is exemplified 
by Penrose filings but the typical structural units of 
three-dimensional Penrose tilings (prolate and oblate 
Ammann rhombohedra) are too large to describe an 
interatomic ordering and their atomic decorations are not 
obvious. Earlier, it was widely believed that a hierarchy 
of icosahedral units could produce the quasicrystalline 
ordering; however, the analysis of known crystal approx- 
imants showed that only a minority of the atoms have 
icosahedrally arranged nearest neighbours. It seems that 
the general principles of quasicrystaUine structures have 
been understood better than the reasons for their growth 
from real atoms (Guyot, Kramer & de Boissieu, 1991; 
K16man, 1989; Steurer, 1990). But a more complete 
understanding is urgently needed because these reasons 
should be common to various systems (quasicrystals, 
metallic glasses, Frank-Kasper phases etc.). 

In a recent fundamental paper (Henley, 1991), several 
canonical cells are used as structure units for icosahe- 
dral quasicrystals. Each cell can be constructed from 
the Ammann rhombohedra. Quasicrystals and their ap- 
proximants can be produced using either deterministic 
or partly random canonical-cell ordering (CCO). The 
generic size of the cells (the length of their shortest 
edges) is more than 10 A and the problem of the atomic 
decoration still remains open. 

On the other hand, it is found (Dmitrienko, 1992, 
1993) that most atoms in crystalline approximants (and 
perhaps in quasicrystals) have dodecahedral local ar- 
rangements, so that the closest neighbours are positioned 
at a few vertices of a small pentagon-dodecahedron. This 
model is based both on the structure of a very simple 
approximant (Dmitrienko, 1990) and on the local order- 
ing, experimentally determined in A1MnSi quasicrystals 
by Janot, Dubois, Pannetier, de Boissieu & Fruchart 
(1988), in A1FeCu quasicrystals by Comier-Quiquandon, 
Quivy, Lefebre, Elkaim, Heger, Katz & Gratias (1991) 
and in A1PdMn quasicrystals by Boudard, de Boissieu, 
Janot, Heger, Beeli, Nissen, Vincent, Ibberson, Audier 
& Dubois (1992). It is shown below that, when con- 
tinued on larger scales, such dodecahedral local ordering 
(DLO) produces the Ammalm rhombohedra and large 
units with icosahedral symmetry. At the same time, DLO 

can produce frustrated positions; among these are posi- 
tions with icosahedral local coordinations. Therefore, it 
is not surprising that those positions are rather minor 
and that in the real crystals they may be empty (as in 
AlsLi3Cu). 

An aim of the present paper is to connect the 
dodecahedral local ordering and the canonical-cell 
ordering, but the global aim is to find a natural 
crystallographic background for rather baroque units 
of modem quasicrystallography. A short discussion of 
DLO in crystals and quasicrystals is given ~ §§ 2 and 
3. The dodecahedral projection scheme (different from 
the conventional icosahedral one) is described in § 4. 
In § 5, it is shown that DLO can be constructed from 
small atomic size canonical cells. Then, in § 6, we 
obtain the decorated Ammann rhombohedra and the 
canonical cells as a natural result of the DLO. Such a 
relationship between DLO and CCO produces the 7-3 
self-similarity of quasicrystalline ordering; perhaps the 
similarity of this type can be extended for ever larger 
scales ad infinitum. In § 7, an additional ordering of 
DLO networks is considered as a possible mechanism 
of the transition between primitive and face-centred 
quasicrystals. The discussion of different aspects of 
DLO in real structures can be found in §§ 8, 9 and 10. 
This paper is an introductory one and therefore some of 
the relevant problems are discussed very briefly: they 
will be considered in detail elsewhere. 

2. Dodecahedral local ordering in simple structures 

The question of the local arrangement of atoms in 
quasicrystals is one of the most important since the 
discovery of quasicrystals, but its complete solution is 
still absent. In our recent papers (Dmitrienko, 1992, 
1993), DLO was suggested as the main structure motif 
in quasicrystals. In this and subsequent sections, we 
illustrate DLO using well known crystal structures and 
later, in §8, we discuss some physical reasons for such 
ordering. 

In the beginning, we restrict ourself to the simplest 
cubic approximants of quasicrystals (see Figs. la and b) 
because from simple structures we can better understand 
the reasons for typical atomic arrangements. A cubic 
approximant will be labelled by two Fibonacci num- 
bers (Fn+l/Fn) if in this crystal the strongest pseudo- 
fivefold reflections have the Miller indices {Fn+l, 0, Fn } 
(Dmitrienko, 1990). Six reflections of this type can be 
used as the basis for other Bragg reflections. In our 
notation, the well known structures A15Li3Cu and o~- 
A1MnSi are (5/3> approximants. The ratio of two lattice 
constants an+l and an of two succeeding approximants 
(F,~+2/Fn+I> and (Fn+l/Fn) is close to the golden 
mean 7- [7- = (1 + 5u2)/2 = 1.618034 . . .  ]. Note that 
there is another labelling scheme (Elser & Henley, 1985) 
in which the c~-A1MnSi crystal is labelled (1/1> but 
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in this case we have an unnatural notation for smaller 
approximants. 

It is well known that there is a relationship between 
orientations of the symmetry axes in icosahedral quasi- 
crystals and their cubic approximants. If we inscribe a 
dodecahedron into a cube, eight of its threefold axes 
coincide with eight < 111> cubic axes. The other twelve 
threefold axes are parallel to the <01"r 2 ) directions; these 
directions are not symmetry axes of cubic crystals but the 
cubic approximants of quasicrystals have approximate 
threefold symmetry relative to these directions. There- 
fore, the (017 -z) directions are referred to as pseudo- 
threefold directions. In any cubic approximant, there are 
also six (001) twofold axes, twenty-four (17-7- 2) pseudo- 
twofold axes and twelve (10T) pseudo-fivefold axes. 

One type of the (2/1) approximant (Dmitrienko, 1990) 
is exemplified by the FeSi structure (Fig. la). The space 
group of this structure is P2t3; its unit cell contains eight 
atoms in 4(a) positions (z,z,:r) at the threefold axes: four 
L atoms and four S atoms. For the idealized structure of 
this approximant, the dimensionless coordinates of L and 

, , ' - " + - - - - " , , !  <Z/l> - BZ0 < 1 / 1 > -  BZ 

' , ' / I  ~ v \ l  

109u~ / , ,  ~ 
6 _ g ~  7 

(a) (b) 

~ -  ~ i , -  AIO 

_ _  

x x 
~ ~ - ~  

(c) 

Fig. 1. Dodecahedral local ordering in crystals. (a) The (2/1) approxi- 
mant. (b) The (I/1) approximant. (c) Two unit cells of the mercury 
crystal with the threefold axis directed along a threefold axis of the 
cubes in (a) and (b). The L and S atoms, shown by large and small 
circles, may be of the same kind. All closest neighbours of each 
atom are positioned at the vertices of a dodecahedron; to simplify the 
pictures, only visible edges of the dodecahedra are shown in (a) and 
(c) by dashed lines. For the (1]1> approximant, the DLO description 
seems to be trivial because the cube can always be inscribed into 
a dodecahedron; however, it is convenient to have such a unified 
description for all approximants. 

S atoms in the unit cell are 

XL = 1/(4T) _~ 0.155; XS = 1 - X L  ' ~  0.845. (1) 

In such a structure, each L atom (large circles in Fig. la) 
is surrounded by seven S atoms (small circles in Fig. la) 
positioned at seven vertices of an ideal dodecahedron and 
vice versa. The dodecahedra have the same orientation; 
only one of them is shown for the atom in the upper-left 
comer of Fig. l a. 

In other words, all shortest L-S bonds are directed 
along either threefold (111 > or pseudo-threefold (01T 2 ) 
directions. The second atomic shell contains six atoms 
of the same sort as the central one; the shortest L-L 
and S-S bonds are parallel to the pseudo-twofold (1TT 2 ) 
directions. The closest L-S distances are equal to c-3, 
whereas the closest L-L (or S-S) distances are 2/31/2 
times longer (b-a). The definitions of c-3 and b-3 
are given at the beginning of §5. In the dimensionless 
coordinates, these two distances are equal to 31/2/(2T) 
and 11% respectively. Thus, there is a compact cluster 
of seven L atoms and seven S atoms with threefold 
symmetry where the central atom is surrounded by 
13 atoms. Two types of rhombohedron can be found 
in this structure: oblate [rhombohedral angle aob = 
arccos (-- 1/3) _~ 109 ° 28'] and prolate [Otpr - -  71" --  O~ob '~  

70 ° 31'). The faces of both rhombohedra are of the same 
form and they can match together; the unit cell may be 
divided into four prolate and four oblate rhombohedra 
(these rhombohedra should not be confused with the 
Ammann rhombohedra considered in § 6). 

In crystallographic books, this structure is referred to 
as a B20 or FeSi-type structure. It is found in many 
alloys: MnSi, A1MnSi, CoGeSi, GeRu, HfSn, HgPd and 
others (Villars & Calvert, 1985). In real crystals, atoms 
are slightly shifted from their ideal positions (see Table 
1 and § 9). Note that, if L and S atoms are the same, then 
the space group of the idealized structure is Pa3 and we 
have the (2/1> approximant of a primitive icosahedral 
quasicrystal. If L and S atoms are different (as in all 
known alloys with the B20 structure), then the space 
group is P213 and we have the (2/1) approximant of a 
face-centred icosahedral quasicrystal (see discussion in 
§ 7). 

Pyrite-like crystals present a slightly different struc- 
ture of the (2[ 1) approximant. The difference is that the 
centre of the prolate rhombohedron is occupied by an 
interstitial atom. This atom shifts other atoms from their 
ideal positions but perhaps stabilizes the structure. In 
Table 1, the atomic coordinates are given for a high- 
pressure form of PdF2, where the shifts are very small 
(Tressand, Soubeyroux, Touhara, Demazeau & Langlais, 
1981); in other pyrites they are more pronounced and 
DLO is less evident. To avoid confusion, it should 
be noted that the pyrite cubic structure has the origin 

c_  ~ _~ !~ shifted to ~ 2,2,2 ] in comparison with the FeSi structure. 
Usually, in pyrites, L and S atoms are of the same sort, 
the space group is Pa3 and we have the approximant of a 
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Table 1. Positions of atoms and icosahedral holes in cubic approximants with DLO 

The hole marked by an asterisk is not icosahedral. Experimental values are given for the first compound of each approximant; for 
o~-A1MnSi we take those positions that are less distorted by the atoms in the/-holes. 

Label Examples 

(1/1) FeSi 
AIPd 

(211) = FeSi 
A1Pd 

(211)b PdF2 
FeS2 

Pyrites 

(312) Au3NaSi 
Au3NaGe 

(5/3),z A15Li3Cu 
Mg32 (A1Zn)49 

Au4Na3Si2 
Au3Na2Sn 

c~-A1MnSi 
a-A1FeSi 
Sc57Rh13 
Hf54Os17 

(5/3) b 

Theoretical Experimental 
Elser-Henley (x,y,z) coordinates (x,y,z) coordinates 

notations in a unit cell in a unit cell 

11-- I (0,0,0) (0,0,0) 
(0.5,0.5,0.5) (0.5,0.5,0.5) 

011 (0.845,0.845,0.845) (0.844,0.844,0.844) 
(0.155,0.155,0.155) (0.136,0.136,0.136) 

011 (0.345,0.345,0.345) (0.343,0.343,0.343) 
(0.655,0.655,0.655) (0.657,0.657,0.657) 

(o,o,o) (o,o,o) 

1]0 (0.095,0.095,0.095) (0.097,0.097 0.097) 
(0.214,0.095,0.405) (0.226,0.133,0.408) 
(0.405,0.405,0.405) (0.381,0.381,0.381) 

111 (0.191,0.191,0.191) (0.187,0.187,0.187) 
(0,0.118,0.191) (0,0.094,0.154) 
(0,0.309,0.118) (0,0.305,0.117) 

(0.118,0.191,0.382) (0.157,0.190,0.406) 
(0.427,0,0.5) (0.404,0,0.5) 
(0.191,0,0.5) (0.199,0,0.5) 

(0.191,0.309,0) (0.175,0.301,0) 
(0,0,0) (0,0,0) 

1/1 (0.118,0.191,0.309) (0.115,0.187,0.300) 
(0.5,0.191,0.309) (0.5,0.180,0.308) 
(0.5,0.118,0.118) (0.5,0.120,0.117) 

(O.118,0.118,0.118) (0.164,0.100,0) 
(0.5,0.5,0.118) (0.5,0.5,0.122) 

(0,0,0.236) ? 
(0,0,0) ? 

(0.309,0,0.5) (0.290,0,0.5) 

(N~NbN¢) or Six-dimensional 
( NtaNa ) indices 

(068) 000000 
(068) 000111 

(067i 111000 
(067) 

(067) 000111 
(067) 000000 

- *hole 

(067) 000000 
(066) 0o10o0 
(39) i-hole 

(067) 000000 
(075) 0i0000 
(076) 0i0100 
(066) 000001 
(156) ] 100i2 
(058) i01001 
(39) /-hole 

(0,12) /-hole 

(076) 000000 
(067) 100i00 

_ _  

(065) 101100 
(067) 001000 

_ _ _  

(156) 111110 
(156) 100010 
(068) 00i 111 
(2,10) /-hole 

primitive quasicrystalline lattice. However, the ordered 
form of this structure, which can be considered as an 
approximant of a face-centred quasicrystal, was also 
found (CoAsS, NiSbS, LalrSi etc.). Pyrite is known 
for the almost dodecahedral form of its monocrystals. 
Mackay (1986) was the first to recognize pyrite as an 
approximant but he suggested other values for the atomic 
coordinates. 

The smaller approximant, (1/1), can also occur in 
both the ordered form (CsC1 structure) and the disor- 
dered form (b.c.c. structure). All shortest L-S bonds are 
directed along eight common cube and dodecahedron 
threefold axes. Because the ratio of lattice constants of 
the succeeding approximants is equal to "r, the cube in 
Fig. l(b) can be exactly inscribed into the coordination 
dodecahedron in Fig. l(a) and the dodecahedron can 
be inscribed into the cube in Fig. l(a). Many alloys 
exhibit both modifications, shown in Figs. l(a) and 
(b), with practically the same density of atoms (A1Pd, 
A1Pt, FeSi, OsSi and others). The close relationship 
between the two structures becomes more evident if we 
compare the oblate rhombohedra in both figures; they 
are equal but look different because they have different 
orientations relative to cubic axes. Hence, inside the 
lower-order (1/1) approximant we can find the whole 
unit cell (eight atoms) of the next (2/1) approximant. 
Such a relationship can be used for the construction of 
ever larger approximants (Dmitrienko, 1993). 

The crystalline structure of the mercury exhibits one 
more example of DLO (see Fig. l c). The rhombohedral 

unit cell of the mercury crystal is very close to the 
prolate rhombohedron shown in Fig. l(a) and it is far 
from the rhombohedron of the f.c.c, packing; different 
sources give the mercury rhombohedral angle aHg be- 
tween 70 ° 31' and 70 ° 44'. Six closest neighbours of 
every atom are near to six vertices of the coordination 
dodecahedron and the centres of symmetry coincide with 
the atomic position. The next atomic shell is a hexagon 
of six atoms in the plane normal to the threefold axis; 
the distance to these atoms is 2/3112 times larger than the 
distance to the closest neighbours (like in (2/1) and (1/1) 
approximants). It is not clear yet whether the mercury 
crystal is a rhombohedral approximant of quasicrystals. 

3. DLO in higher approximants and quasicrystals 

Further examples of DLO can be found in larger ap- 
proximants of quasicrystals (see Table 1). We can say 
that the approximants are DLO networks of atoms. The 
general methods of the construction of the DLO ap- 
proximants with ever larger unit cells were discussed by 
Dmitrienko (1992, 1993); the generic property is that any 
approximant contains the representative pieces of smaller 
and larger approximants. Here, we should note several 
additional features that occur in the higher approximants 
in comparison with the smaller ones. The first and most 
evident feature is the existence of the atomic positions 
with different symmetry and different environments. The 
analysis of all possible local environments is beyond the 
scope of this paper; in Table 1 we present (for each site) 
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only the numbers of neighbouring atoms from the same 
DLO network. Nc is the number of closest neighbours 
at the threefold distance c-3 (DLO neighbours), Nb is 
the number of atoms at the twofold distance b-3 and N~ 
is the number of atoms at the short frustrated distances 
b_a/r (such close bonds are also a typical feature of 
higher approximants - see {} 9). 

Another interesting phenomenon is the presence of 
interstitial atomic sites, marked as '/-holes' in Table 
1, which are the icosahedrally coordinated positions 
between the atoms of the DLO networks. All the closest 
atoms around an/-hole are positioned in pseudo-fivefold 
(10r) directions but their distances from its centre 
are different: there are N~ neighbours at the normal 
interatomic distance an/r and N" neighbours at the 
abnormally short distance an/r 2. If we try to continue 
the dodecahedral arrangement inside /-holes, any new 
atomic position is too close to one of the old positions. 
Therefore, /-holes may be considered as the places of 
frustration for the DLO. In real crystals, the/-holes may 
be occupied by the atoms or may be empty. 

The (3/2} approximant is exemplified by Au3NaSi 
and Au3NaGe crystals; their space group is Pa3 with 
40 atoms per unit cell: eight Na atoms [in 8(c) positions 
(z, x, z)] and 24 Au atoms [in the general 24(d) positions 
(x, y, z)] build up the DLO network, whereas eight Si or 
Ge atoms [in (z, x, x) positions] occupy the i-holes. The 
calculated values of the atomic coordinates are 

XN a "-- 1/47 -2, 

(XAu, YAu, ZAu) = (51/2, 1,Ta), 

xsi = r/4. 

(2) 

The structure of the (3/2) approximant is similar to 
that suggested by Kuriyama, Long & Bendersky (1985) 
(except for the atoms in the/-holes); I am grateful to 
a referee of a previous paper (Dmitrienko, 1993) who 
attracted my attention to this similarity. 

The next approximants, (5/3)a and (5/3)b, are close 
to the most popular crystals in quasicrystallography, 
AlsLi3Cu and a-A1MnSi; the space symmetry of both 
approximants is Im3. As for the smaller approximants, 
the coordinates of atomic sites are simple flmctions of r: 
1/(2T) " 0.309, 1/2(7 -2) ~ 0.191, 1/2(r a) _~ 0.118 etc. 
Most of the atoms are in DLO networks and again there 
are i-holes. Per unit cell, the (5/3)= ((5/3)b) approximant 
contains 136 (138) positions in the DLO network and 
26 (12) positions in the large /-holes. In the (5/3)b 
approximant, the number of positions seems to be too 
large for real a-A1MnSi; some of them may be omit- 
ted (or partly occupied) to produce the observed Pm3 
symmetry of a-A1MnSi (Cooper & Robinson, 1966) and 
5c57Rh13 as well as the lmmm symmetry of Hf54Os17 
(Cenzual, Chabot & Parth6, 1985). The (0,0,0)/-hole is 
empty in AlsLi3Cu but it is occupied in Au3Na2Sn and 
in Mg32(A1Zn)49 (Bergman, Waugh & Pauling, 1957) 

whereas other/-holes are occupied in all known cubic 
approximants of this order, enforcing small shifts of 
neighbouring atoms. 

Note that (0.164,0.100,0.000) positions, which pro- 
duce small empty icosahedra centred at (0,0,0) and 
! ! !~ 2,2,2, points in the conventional model of a-A1MnSi 

(Cooper & Robinson, 1966), correspond to the i-holes 
of the (5/3)b approximant [their theoretical coordinates 
are (0.191,0.118,0)]. However, neutron diffraction shows 
that such positions are absent in the A1MnSi quasicrys- 
tals (Janot, Dubois, Pannetier, de Boissieu & Fruchart, 
1988). Therefore, and because of some theoretical ar- 
guments, we replace those empty icosahedra by the 
CsCl-type cubic arrangement of atoms, restoring the 
DLO network in those parts of the structure (like in Fig. 
lb, see also {}8). After such replacement, the intensities 
of X-ray and neutron reflections should not vary too 
strongly. It would be interesting to prove which model 
better fits the experimental data. 

In the DLO model, there is a surprising duality 
between (5/3)a and (513)b structures. Indeed, in addition 
to the/-holes listed in Table 1, there are a lot of other 
/-holes in any DLO network; all the /-holes can be 
considered as projections of body-centre points of a six- 
dimensional lattice in the projection scheme described in 
{}4. The/-holes themselves can produce a DLO network. 
It is easy to show that the positions of some/-holes in the 
(5/3)a approximant just correspond to atomic positions 
in the (5/3)b approximant and vice versa; for complete 
correspondence, the atomic coordinates (say, x and y) 
should also be permuted because of the convention on 
the direction of cubic axes in the ImP3 space group. In the 
(2/1) and (3/2) approximants, the same duality operation 
preserves their structures but shifts the origins of the unit 
cells. 

4. Projection scheme for DLO 

There are 20 places (20 vertices of the coordination 
dodecahedron) where we can find the closest neighbours 
of any atom of the DLO networks. 20 vectors, connecting 
the neighbours, have the following forms: eight (111) 
vectors and twelve (01"r 2) vectors (we use the Cartesian 
coordinates with the axes directed along cubic axes of 
approximants). Among those vectors we can select six 
independent vectors, e l , . . . , e 6 ;  for example, we can 
take the vectors directed from the site 0 to six close 
neighbours, marked 1 to 6 in Fig. l(a); 

el  = An(r2,0, 1), 

e2 = An(1,T2,0), 

ea = A,~ (0, 1, r2), 

e4 = An ( - - r  2, O, 1), (3) 

e5 = An (1, - r  2, 0), 

e6 = An (0, 1, - - r2 ) ,  
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where the common factor depends on the order n of 
the approximant (An = r-n~2). All three-dimensional 
coordinates are given as fractions of the unit-cell dimen- 
sions; because an o¢ r n, the real length of the vectors is 
the same for all approximants. Then, we can express the 
position r,~ of the nth atom of the DLO network as a sum 
of those six vectors with integer coefficients n 1,. • •, n6: 

rn = n l e l  + . . .  + n6e6, (4) 

but not all sets of integers are permitted. 
As usual, it is convenient to consider six integers 

n l , . . .  ,n6 as the coordinates of vertices in a six- 
dimensional cubic lattice, so that six vectors e l , . . . ,  e6 
are the projections of six edges of the cube onto our 
space. The numbers ni are not independent; they are 
restricted by some strip in the six-dimensional space. We 
should select the size, direction and shape of the strip 
(i) to provide the icosahedral symmetry of quasicrystals 
and desirable symmetry of approximants and (ii) to 
prevent too short distances between atoms (details will 
be published elsewhere). 

Such a projection scheme is a modification of the 
conventional strip-projection method (Kalugin, Kitaev 
& Levitov, 1985): the edges of a six-dimensional cube 
are projected on the threefold directions instead of the 
fivefold ones. The conventional fivefold basic vectors are 
the linear combinations of the threefold vectors given 
by (3) and vice versa; therefore, the global icosahedral 
symmetry of quasicrystals can be reached within both 
schemes. The DLO networks can be obtained within con- 
ventional projection schemes if some special decoration 
is used (see, for example, Cornier-Quiquandon, Quivy, 
Lefebre, Elkaim, Heger, Katz & Gratias, 1991). 

By our method, we can obtain the six-dimensional 
coordinates for all atoms in any DLO network as is 
shown in Table 1 [for the (3/2) and (5/3)a approximants, 
the x and y components of the basic vectors in (3) should 
be permuted]. Note that we use no special decoration of 
the six-dimensional lattice: atomic positions correspond 
to the projections of the vertices. The /-holes in the 
DLO networks have the half-integer six-dimensional 
coordinates; hence, they correspond to the projections 
of body centres of a six-dimensional cubic lattice. 

5. Atomic size canonical cells 

Originally, four canonical cells (A, B, C and D) were 
used for the description of a network of icosahedral 
nodes in quasicrystals and their large approximants 
(Henley, 1991). The cells consist of the nodes connected 
by two allowed kinds of linkage, called c (in the 
threefold direction) and b (in the twofold direction), 
where 

c= T~an[3/(X + Tg)] 1/2 (5) 

and the b linkage is 15% longer, 

b= r2aR[4/(1 + r2)] 1/2 (6) 

(an is the usual quasilattice constant; in real alloys, 
aR -~ 5/k and b and c are about 10 i ) .  

It is evident from Fig. 2 that small approximants can 
be constructed from small atomic size canonical cells. 
Their linear dimensions a r e  T 3 times smaller than the 
original ones: 

c-3 = cr-3; b-3 = br -3. (7) 

Hence, the lengths of the edges of the cells, c-3 and b-3, 
are approximately typical interatomic distances. 

For such small cells, we use the notations A-a, B-3 
and C-3. Two of the cells, A-3 and C-3, are slightly 
irregular tetrahedra; such configurations are favourable 
for four atoms and the distortions of the tetrahedra may 
be a result of a difference between atomic radii. If L and 
S atoms are different, we have two types of B-3 and 
C-3 cells but only one type of A - 3  cell. The cells can 
match one another with rather obvious matching rules 
(Henley, 1991). The prolate rhombohedron (see Fig. 1) 
consists of two B-a and two C-3 cells, whereas the 
oblate rhombohedron consists of six A-3 cells. 

The small canonical cells fit the typical atomic ar- 
rangements and fill up most of the volume of approxi- 
mants and quasicrystals. Nevertheless, it is impossible to 
describe all the local configurations with three or even 
four small cells [we can introduce the fourth cell, D-a,  
which can be found in the (3/2) alSproximant; it is T 3 
times smaller than the D cell found by Henley (1991)]. 
The most obvious place where it is impossible is the 
empty icosahedron centred at the (0,0,0) positions in the 
(5/3)a approximant. Another place is near the (0.5,0,0.5) 
point in the the same structure: there are two equivalent 
atomic sites, (0.427,0,0.5) and (0.573,0,0.5), separated 
by an abnormally small distance b_a/r (in a real crystal 
the atoms are shifted out to a normal distance). The simi- 
lar short bond is between the (0,0,0.236) and (0,0,0.382) 
positions in the (5/3)b approximant. 

There are two possible solutions to this problem. The 
first is to add new cells to describe all such places, but 

(2/i) - B20 (I/1) - B2 

~x z 
Y 

(a) (b) 

Fig. 2. The atomic size canonical cells A_ 3, B_ a and C_ 3 in the small 
cubic approximants (a) (2/1) and (b) (1/1). Single and double lines 
correspond to the (pseudo-)threefold c-3  bonds and the (pseudo-) 
twofold b-3 bonds, respectively. 
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their number is too large to be constructive. For instance, 
we can add (i) the D_3 cell and (ii) the icosahedron of 12 
atoms connected by 30 b-a bonds etc. It might be useful 
to enumerate all the places of this type because such 
places may be important for phason-type reconstructions, 
but this is beyond the scope of this paper. The second, 
more reasonable, solution is to consider all 'bad' places 
as the places where canonical-cell ordering is frustrated 
(this is further discussed in § 9). 

6. DLO-induced decorations for the Ammann 
rhombohedra and for the canonical cells 

It is interesting to understand the relationship between 
DLO ordering and the traditional description of icosa- 
hedral quasicrystals. Namely, what is the DLO-induced 
decoration of the Ammann rhombohedra, the canonical 
cells and other units usually used for quasiperiodic 
tilings? To answer this question, we should find these 
units inside the known approximants with DLO. Surpris- 
ingly, two different decorations of the Ammann rhom- 
bohedra were found in the same (2/1)a approximants 
(Fig. 3): (i) the edge decoration; (ii) the vertex-face 
decoration. 

In the case of the edge decoration, the prolate and 
oblate Ammann rhombohedra are centred in the (0,0,0) 
and (½, ½, ½) positions and their threefold axes are 
parallel to the cubic threefold axes. Each edge (its 
length is an) is divided by the atomic site in the 
golden ratio. Two atomic sites at the body diagonal 
of the prolate rhombohedron divide the diagonal in the 
ratios r : l : r .  If L and S atoms are of the same kind, 
the rhombohedra can match face to face; in the B20 
structure, they interpenetrate because this approximant is 
too small. If L and S atoms are different, the decorated 
rhombohedra are chiral: they have two forms, left and 
fight, which are mirror reflections of each other; the 
chiral rhombohedra can match face to face only with 
the rhombohedra of opposite chirality [in Fig. 3(a), 
the prolate and oblate rhombohedra are of the same 
chirality]. The vertices of the rhombohedra correspond to 
the/-holes; in higher approximants, they can be occupied 
(at least partly) by the interstitial atoms shifting the 
edge atoms from their ideal positions to the middles 
of the edges. After such shifts, the decoration becomes 
similar to that one usually used for A1LiCu quasicrystals 
(Hiraga, Hirabayashi, Inoue & Masumoto, 1985). 

Another choice of the positions of the rhombohedra 
(the prolate one in the centre and the oblate one in 
the origin) gives the vertex-face decoration (Fig. 3b). 
We see that an is the minimal fivefold distance in the 
DLO networks. The atoms on the faces divide the long 
face diagonals in the golden ratio. Two atoms at the 
body diagonal of the prolate rhombohedron divide it 
into three segments in the ratio 1:51/2:1. Note that the 
body diagonal of the oblate rhombohedron is a c-a bond 
whereas the body diagonal of the prolate rhombohedron 

is r 3 time longer, that is, it is equal to the c linkage 
(Henley, 1991). The decorated rhombohedra are not 
chiral and they can match face to face even if L and 
S atoms are different. This decoration is similar to that 
used for A1MnSi quasicrystals (Elser & Henley, 1985; 
Janot, Dubois, Pannetier, de Boissieu & Fruchart, 1988). 

In higher approximants, the decorations of the Am- 
mann rhombohedra may have some changes (the body- 
diagonal sites may be unoccupied like in the (3/2) 
approximant, some/-holes may be filled by atoms etc.) 
but we have not found new types of decorations com- 
patible with DLO. 

As for the canonical cells, their atomic decorations 
can be found in several ways. Firstly, we can find 
decorated A, B, C and D cells in the (5[3/, (8/5 / 
and (13[8} approximarlts, correspondingly r 3 inflated in 
comparison with the (111}, (2/1)and (312 / approximants. 
Unfortunately, the real atomic structures and their DLO 
idealizations are not known for the (8/5) and (13/8) 
approximants; hence, only the decorations of the A cell 

( Z / l )  - B e 0  l' 

z 

(b) 

Fig. 3. Two different DLO-induced decorations of the Ammann rhombo- 
hedra in the same cubic approximant, (2/1}~ : (a) the edge decoration; 
(b) the vertex-face decoration. All the edges of the Ammann rhombo- 
hedra are directed along pseudo-fivefoid axes. Large and small circles 
represent the L and S atoms, respectively; the letter d marks atoms at 
the body diagonals of the prolate Ammann rhombohedra. The cubes 
designate the unit cell of the B20 structure. 
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can be found this way (inside the (5/3) approximants). 
Secondly, we can use the relations of the canonical 
cells to the Ammann rhombohedra, as given by Henley 
(1991), plus the DLO decorations of the letters, found 
above. Thirdly, we can combine the symmetry of the 
canonical cells (Henley, 1991) and DLO; it is evident 
that only a few decorations meet both these conditions. 

Then, by the second or third method, we can obtain 
(at least, in principle) the next generation of the cells, 
"1" a larger than canonical cells, and so on ad infinitum. 
Cubic approximants of any high order (but not all of 
them!) can be constructed if we replace the atomic size 
canonical cells in (1/1), (211) and (3/2) approximants 
by the ever larger canonical cells. 

7. Even/odd ordering in DLO networks 

It is well known that some alloys may exist both 
in an ordered (CsC1 type) phase and in a disordered 
(b.c.c.) phase, and there may be a phase transition 
between these phases. The same phenomenon is possible 
in other DLO networks as well. Atoms in any DLO 
network can be divided into even and odd sublattices 
wherein neighbours related by c-3 bonds have opposite 
parities, while those related by b-3 bonds have the 
same parity. If the atoms of even and odd sublattices 
are different, then we have even/odd ordering in DLO 
networks. For instance, all the structures shown in Figs. 
1 and 2 can be divided into subsets of L and S atoms; 
the ordered (disordered) phase corresponds to L ~ S 
(L = S). For neighbouring atoms, such ordering is a 
very typical feature of many alloys. At larger scales, 
the even/odd ordering of DLO networks produces the 
even/odd ordering of icosahedral nodes, considered by 
Henley (1991), because any c linkage is a sum of an 
odd number of c-3 bonds (more exactly, the sum of 
an odd number of ei). We can also assign a parity 
to i-holes because each /-hole is surrounded by the 
atoms of the same parity; in the conventional model 
of the o~-AIMnSi crystal, the /-holes of some parity 
are occupied by atoms whereas the holes of opposite 
parity are empty. It should be noted here that all typical 
threefold and fivefold distances (7-3kc-3 and 73kaR, 
where k -- 0, 1, 2, 3, . . .  ) are sums of odd ei, whereas 
the typical twofold distances ('rkb_3), which are also the 
periods of cubic approximants, are the even sums of e~, 

In the six-dimensional cubic lattice, the transition 
from L = S to L ~ S is the transition from the primitive 
lattice (with one atom per cell) to the f.c.c. (NaCl-like) 
lattice (Henley, 1988; Niizeki, 1990). Therefore, when 
L = S, all cubic approximants that are considered are 
the approximants of quasicrystals with primitive lattices, 
whereas, when L ~ S, they are the approximants of face- 
centred quasicrystals. According to the Landau theory 
(Landau & Lifshitz, 1968), in some cases such a phase 
transition may be of the second order but in other cases 

modulated structures can arise; a detailed discussion 
of this will be given elsewhere. Note that the diffuse 
reflections frequently observed in the quasicrystals with 
the primitive lattice may be a result of the even/odd 
short-range (middle-range) ordering. 

The (1/1 / and (2/1)approximants were observed both 
in ordered and in disordered forms; corresponding space 
groups are Pm3m and Im3m for the (1/1) approximant, 
whereas for the ordered (2/1)a approximant the space 
group is P213 and for the disordered (2/1)b approximant 
it is Pa3. In (5/3) approxim~ts, the ordering of this type 
leads to a transition from Im3 to Pm3 symmetry; we can 
speculate that the Pm3 symmetry of o~-A1MnSi may be 
a result of such ordering (contrary to the conventional 
point of view, which considers the Pm3 symmetry to be 
a result of the partial occupancy of i-holes). There is ex- 
perimental evidence (Dubois, Kang &von Stebut, 1991) 
that A165Cu20Fe15 quasicrystals (usually face centred) 
can exist in the disordered primitive phase as well. 
It is worth noting that in large approximants ((3/2) 
and larger) there is additional ordering of chemically 
different atoms that cannot be described within the 
present DLO model; a more complicated approach is 
perhaps needed (see § 10). 

Special attention should be paid to the notation of 
the cubic approximants of the face-centred quasicrys- 
tals. It has been shown (Dmitrienko, 1990) that all 
three-dimensional Miller indices of these approximants 
are even; formally, we have the face-centred cubic 
approximants, which should be labelled (2Fn+l/2Fn). 
However, we can (in fact must) choose a new cubic unit 
cell that is half as large in all directions. After such a 
choice, we have the same size of unit cell, the same 
Miller indices of the common Bragg reflections and the 
same notation (Fn+l/Fn) for the cubic approximants of 
primitive and face-centred quasicrystals (but of course 
they have different space groups). The three-dimensional 
indices of the superlattice reflections (in approximants 
of the face-centred quasicrystals) are also integers. It 
is convenient to have such a unified description, as it 
is convenient to use the same unit cell for CsC1 and 
b.c.c, structures. The only disadvantage of this conven- 
tion is that the six-dimensional indices of superlattice 
reflections are semi-integers. 

8. Physical reasons for the dodecahedral 
local ordering 

At first glance, it seems rather mysterious that atoms 
are positioned in the vertices of dodecahedra. Now, 
we want to show that DLO is naturally produced by 
the b.c.c, and CsCl-type atomic ordering. First of all, 
we compare b.c.c, and mercury lattices (Fig. 4). The 
(001) atomic plane of the mercury crystal is very close 
to the (110) plane in the b.c.c, crystal because the 
rhombohedral angle in mercury is close to 70 ° 32' (Fig. 
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4). However, there is different stacking of those planes 
in the perpendicular direction: in the b.c.c, structure, the 
next plane is shifted at half of the period in the [110] 
direction; in the mercury crystal, the shift is twice as 
small (compare Figs. 4a and b). Each subsequent plane 
produces a layer of the oblate rhombohedra in the b.c.c. 
structure and a layer of the prolate rhombohedra in the 
mercury structure. Comparing Figs. 4(a) and (b), we can 
see that the b.c.c, lattice and the mercury lattice are 
very close and that one structure can be transformed 
into the other by a rather small shift of the upper plane 
as a whole. It is interesting that such a marteusitic 
transformation may be a stage of a practically important 
b.c.c.-f.c.c, transition. Indeed, a mercury-like crystal can 
easily be transformed into a f.c.c, structure by decreasing 
the rhombohedral angle to 60 °. Hence, instead of the 
classical Bain transformation, the b.c.c.-f.c.c, transition 
can proceed via the mercury-like intermediate state. 

The second example (Fig. 5), closely related to the 
first one, demonstrates the generation of a cluster similar 
to the Mackay icosahedron. Let us consider the CsCl-like 
cluster of seven S and eight L atoms that can be divided 
into four oblate rhombohedra or 24 A-3 cells [see Fig. 
5(a) and compare it with Fig. l(b)]. 

We suppose that the interatomic distances have the 
following values favourable for the CsCl-type ordering: 

r L L  -~ b-3 ;  r s s  < r L L ;  r L S  - -  C-3. (8) 

It should be particularly emphasized that we fix only the 
lengths of interatomic bonds, not their directions. 

Now, we try to find favourable places for new ad- 
ditional atoms in the next coordination sphere. Usually, 
the favourable places are at the vertices of the tetrahedra 
where a new atom contacts with three old atoms. To 
continue the CsCl-like structure, we should add an S 
atom (marked S' in Fig. 5a). If instead of the S atom we 
add an L atom (marked L') and if the new L atom is at 
typical distances from its neighbours [(8)], then it is easy 
to see that the L atom has the position ( ~ ,  2 ,0)  (all the 
coordinates are in fractions of the unit-cell dimensions). 
This position is in a pseudo-threefold [1T20] direction 
relative to the closest S atom and in a pseudo-fivefold 
[7-10] direction relative to the central S atom. In other 
words, the additional L atom forms a C-3 cell on the 
face of an  A - 3  cell. There may be several reasons to 
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(a) (b) 

Fig. 4. Stacking of the similar atomic planes in (a) b.c.c, and (b) 
mercury crystals. The first plane is shown as circles and the second as 
squares. 

prefer an L atom to an S atom, either energetic (if an 
L atom is energetically favourable to this coordination 
sphere) or statistical (if there are more L atoms in the 
cluster environment). 

As the next step, we can fill another place of the 
same type in the vicinity of the same S atom (it is 
impossible to occupy two others because they would be 
too close to the first L atom). These two places reduce 
the symmetry from fourfold to twofold. A dozen L atoms 
in such positions form a regular icosahedron around the 

'7 -2  7" centre of the cluster [ (T ,  7,0) positions] and complete 
this coordination sphere (Fig. 5b). 

To fill the next coordination sphere with the same 
packing rules, we should add 24 S atoms at the vertices 
of A-3 tetrahedra, formed on the faces of those C-3 
cells that were created at the previous stage. These atoms 

'7 - 2  7" are at pseudo-twofold (½, y ,  7) positions relative to the 
central atoms; their distances from the central atom are 
equal to 7-. One of them is marked as S" in Fig. 5(b). 
Note, that the B-3 cells occur automatically at this stage. 

Thus, starting from the 15-atom CsCl-like cluster, we 
created the 51-atom cluster with the dodecahedral local 
arrangement of all atoms. If we add six atoms in (7-,0,0) 
positions, then the symmetry of the outer shell of the 
cluster becomes icosahedral (Fig. 5c) and we obtain just 
that cluster that surrounds the centre of coordinates in 
the (5/3)b approximant (see Table 1). However, each of 
these new atoms has one abnormally short bond (marked 
by crosses in Fig. 5d) with an old atom. This is a typical 
frustrated place as discussed in § 9. Note that the outer 
shell of the cluster, grown in this manner, coincides with 
the outer shell of the Mackay icosahedron, whereas the 
inner parts are different. 

From these examples, we see that the packing of 
the matched A-3 and C-3 tetrahedra naturally produces 
DLO and icosahedral motifs in large clusters; note also 
the densely populated atomic planes, which are normal 
to the twofold and pseudo-fivefold directions (see Fig. 
5c). It seems that such a 'growth' of DLO clusters can 
be easily simulated with a computer. 

Another physical argument for DLO arises from the 
maximum-density principle. For example, let us find 
what is the densest config~_ration of eight atoms in 
the cubic unit cell with Pa3 symmetry if the minimal 
distance between atoms is fixed. The dimensionless 

1 coordinates of the atoms are (x,x,x), (~,~,~), (½ + x, ~ - 
x,x) etc. To obtain the maximal density, we should find 
that x thst provides the maximum of the dimensionless 
distance between closest neighbours. It is easy to see 
that the maximum is reached when the distances to six 
closest neighbours of each atom just coincide with the 
distance to the seventh closest neighbour, that is 

(½ _ 2x)2 + (1)2 = (2x)2 + (2x)2 + (2x)2. (9) 

From (9), we obtain x = 1/(47-). Hence, that x which 
gives DLO in <2/1) approximants [see (1)] also pro- 
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vides a maximum of their atomic density. It would be 
interesting to apply this idea to higher approximants. 

It is not very clear which interaction produces the 
DLO in the mercury crystal where all the atoms are of 
the same size. One possible explanation is that, just for 
that rhombohedral angle, which corresponds to the DLO, 
the Fermi surface of mercury touches simultaneously 
different faces, {011 } and { 111 ], of the Brillouin zone; 
such events are of great importance for the structure of 
metallic crystals (Jones, 1960) and quasicrystals (Poon, 
1992). 

9. Some intrinsic distortions of DLO 

The previous sections have demonstrated that we can 
create, either step by step or globally (with projection 

methods), large DLO networks. However, in such sys- 
tems some specific distortions arise, perhaps inevitably; 
therefore, DLO should be treated as an idealization of 
real ordering: real structures have the DLO networks 
distorted for several reasons. First of all, most atoms 
have asymmetric environments and are shifted from 
ideal DLO positions if real interatomic interactions are 
taken into account. The small shifts of atoms in the B20 
structure are an example of such distortion. Then, real 
quasicrystals are alloys of two or more sorts of atoms 
with different atomic radii; this also produces some shifts 
of atoms. 

The more important cause of DLO imperfection is the 
presence of frustrated places of two types: 

(i) the interstitial atoms that occupy/-holes and shift 
neighbouring atoms of the DLO network; 

[-.r-jr 21 ] 
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Fig. 5. Growth of an atomic cluster with dodecahedral and icosahedral motifs. Large circles or squares represent L atoms and small circles or 
squares S atoms. All atoms are projected on the x y  plane and single and double lines are the projections of c -3  and b-3 bonds, respectively. 
The initial CsCl-like clusters are shown as circles whereas adjoining atoms are shown as squares; for simplicity, the evident b-3 bonds between 
small atoms of the initial cluster are not shown. (a), (b) and (c) The successive stages of the growth (see text). Note that the cluster in (c) is 
the modified Mackay icosahedron. (d) The frustrated pairs of atoms in the final cluster. The short frustrated bonds are marked by crosses. The 
closest neighbours of each atom are at the vertices of a small dodecahedron, as in Fig. 1 (except for the frustrated pairs of atoms). 
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(ii) the pairs of atoms connected by the short twofold 
bonds, b-a/7-, which we call the close pairs [for such 
atoms N~ -- 1 in Table 1; Fig. 5(d) shows their typical 
environment in different projections]. 

In real crystals like A15LiaCu, such frustrated bonds 
relax to allowed interatomic distances. However, there is 
another way to escape frustration in such places if only 
one of two close sites is occupied by an atom. In the 
latter case, the frustrated places of the second type may 
be considered as a physical realization of the two-level 
system. Indeed, the atom can jump rather easily between 
two close sites through the ring of six neighbouring 
atoms (see Fig. 5d). In the (5[3)b approximant, two 
close sites are not equivalent; hence, their occupancies 
should be different. In the (5/3)a approximant, two close 
positions are crystallographically equivalent and their 
occupancy should be 0.5; this possibility cannot be ruled 
out even for the well investigated structure of A15Li3Cu 
because it is difficult to distinguish one A1 atom from 
half of a Cu atom in these positions. 

As for the i-holes, it is not clear when they are 
occupied by atoms and when they are not. Note only 
that the occupied /-holes look like the 'wrongly in- 
flated' positions of DLO. For instance, starting from 
the (0,0.118,0.191) position, we find the 7-3 inflated 
position, (0,0.5,0.809), in the DLO network of the (5/3)a 
approximant, whereas the 7--inflated site is the filled 
/-hole (0,0.191,0.309); the same phenomenon presents 
itself in the (5/3)b approximant. 

Note also that the universal local arrangement of 
atoms (like DLO) should provoke other types of dis- 
tortions: (a) easy twinning and (b) coherent growth of 
approximants and quasicrystals. From the real example 
(Fig. 3), we can see that the DLO-induced decora- 
tions make possible both the face-to-face matches of 
the Ammann rhombohedra and their intersections. The 
intersections may be important for the defect formation 
in quasicrystalline alloys. It seems that all the considered 
sources of distortions are intrinsic both to the DLO and 
(in 7-3 larger scales) to the CCO; they can generate at 
least a part of the observed disorder in quasicrystals. 

10. Concluding remarks 

The above consideration shows that the dodecahedral 
local ordering, which was originally found in small 
approximants (Dmitrienko, 1990), may be successfully 
used for larger approximants and quasicrystals. We have 
shown that on ever larger scales there a r e  7 -3 inflated 
arrangements of threefold and twofold bonds; there- 
fore, it seems better to speak about dodecahedral rather 
than icosahedral arrangements of atoms, nodes etc. in 
the quasicrystals and approximants (the node may be 
considered as a 7-a-inflated atom). 

The 7-a-times reduced canonical cells (A-a, B-a and 
C-3) give us a good opportunity to describe local atomic 

arrangements. Nevertheless, it is impossible to describe 
all local configurations with three or four small cells; 
the most evident place for which this is so is an empty 
icosahedron (/-hole) centred at the (0,0,0) positions in 
A15LiaCu (see § 9). It is not very clear how many 
different /-holes may arise in DLO networks but this 
number is not very large. 

There may be several different cubic approximants 
of each order: they may be symmorphic or nonsymmor- 
phic (Dmitrienko, 1987), even/odd ordered or disordered 
(§ 7); in some cases, we can obtain new structures using a 
duality operation (§ 3). But for each order the number of 
possible structures is finite if we demand that the DLO 
network should have cubic space symmetry. Thus, in 
principle, we can enumerate all possible cubic approxi- 
mants of a given order; for noncubic approximants, DLO 
restricts the possible values of the lattice parameters. 

Within the present DLO model, we can describe 
the transition between quasicrystals (approximants) with 
primitive and face-centred six-dimensional lattices (see 
§7). However, such a crude model is unable to describe 
the chemical ordering in large approximants ((3/2) and 
larger). Nevertheless, we can speculate that more com- 
plicated ordering in the six-dimensional lattice (together 
with the DLO projection scheme) will be able to pro- 
vide the real atomic compositions of approximants and 
quasicrystals. 

There is another way to describe real atomic compo- 
sition, which seems even more plausible than the cut- 
projection method with several atomic surfaces. Indeed, 
it is possible to use the strip-projection method with a 
simple six-dimensional lattice (primitive or face-centred) 
but to separate the three-dimensional atomic sites in 
accordance with their positions in the strip, that is, in ac- 
cordance with their perpendicular coordinates. Roughly 
speaking, the positions near the strip centre and the posi- 
tions near the strip boundary should correspond to differ- 
ent sorts of atoms in a three-dimensional (quasi)lattice. 
Or, in other words, the strip should be divided (in the 
orthogonal space) into several substrips corresponding 
to different sorts of atoms. Such an approach seems 
reasonable because for each site both the coordination 
number and symmetry of the site environment depend 
crucially on its perpendicular coordinates. If this idea 
is valid, there is an important consequence: occupying 
some site, the atom of the definite sort stabilizes the 
perpendicular coordinates of the site, restricts the phason 
motions and favours approximant structures rather than 
the quasicrystalline one. 

The phason motion can be also restricted owing to 
the occupancy of icosahedral holes by interstitial atoms. 
Indeed, the icosahedral holes are just the places of low 
density where easy structural transformation of phason 
type can occur (K16man, 1989); if the places are filled, 
the phason motions may be frozen. 

It seems natural that the atomic structures with DLO 
should grow most quickly in the (pseudo-)threefold 
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directions (that is, in the directions towards the closest 
neighbours); therefore, it is not surprising that the three- 
fold faces are usually absent on the surfaces of growing 
quasicrystals. 

The relationship between the icosahedral quasicrystals 
and the CsC1 structure (via A-3 cells) was demonstrated 
above. Now, it is interesting to note that pieces of the 
(110) atomic plane of CsC1 have been suggested by 
Dong, Dubois, Kang & Audier (1992) as the structural 
units for the decagonal phase. Perhaps this is an expla- 
nation for why the icosahedral, decagonal and CsCl-like 
phases have close compositions in many alloys. 
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fruitful. The support of l'Universit6 Pierre et Made 
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Abstract 

The classical problem of determining heavy-atom pa- 
rameters in single or multiple isomorphous replacement 
methods is reconsidered in two related papers. This first 
paper systematically examines how to derive a priori 
statistical information concerning heavy atoms and lack 
of isomorphism (LOI). By a priori is meant without any 
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knowledge other than that of the measured intensities 
(and their estimated or's) of a 'native' and 'derivative' 
crystal pair, that is to say before any potential site 
of substitution has been determined. First, both the 
terms ~ n  = )--~1 f~, wherefi is the scattering factor 
of the ith heavy atom and N is the number of sites 
and, simultaneously, the best scale factor between the 
'native' and 'derivative' data are estimated a priori as 
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